Multi-manifold Clustering
نویسندگان
چکیده
Manifold clustering, which regards clusters as groups of points around compact manifolds, has been realized as a promising generalization of traditional clustering. A number of linear or nonlinear manifold clustering approaches have been developed recently. Although they have attained better performances than traditional clustering methods in many scenarios, most of these approaches suffer from two weaknesses. First, when the data are drawn from hybrid modeling, i.e., some data manifolds are separated but some are intersected, existing approaches could not work well although hybrid modeling often appears in real data. Second, many approaches require to know the number of clusters and the intrinsic dimensions of the manifolds in advance, while it is hard for the user to provide such information in practice. In this paper, we propose a new manifold clustering approach, mumCluster, to address these issues. Experimental results show that the performance of the proposed mumCluster approach is encouraging.
منابع مشابه
Iterative Views Agreement: An Iterative Low-Rank Based Structured Optimization Method to Multi-View Spectral Clustering
Multi-view spectral clustering, which aims at yielding an agreement or consensus data objects grouping across multi-views with their graph laplacian matrices, is a fundamental clustering problem. Among the existing methods, Low-Rank Representation (LRR) based method is quite superior in terms of its effectiveness, intuitiveness and robustness to noise corruptions. However, it aggressively tries...
متن کاملClustering: Evolutionary Approaches
This thesis is concerned with exploratory data analysis by means of Evolutionary Computation techniques. The central problem addressed is cluster analysis. The main challenges arisen from the unsupervised nature of this problem are investigated. Clustering is a problem lacking a formal general-accepted objective. This justifies the multitude of approaches proposed in literature. A review of the...
متن کاملMulti-View Spectral Clustering via Structured Low-Rank Matrix Factorization
Multi-view data clustering attracts more attention than their single view counterparts due to the fact that leveraging multiple independent and complementary information from multi-view feature spaces outperforms the single one. Multi-view Spectral Clustering aims at yielding the data partition agreement over their local manifold structures by seeking eigenvalue-eigenvector decompositions. Amon...
متن کاملMultiple Manifold Clustering Using Curvature Constrained Path
The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained...
متن کاملProtein Clustering on a Grassmann Manifold
We propose a new method for clustering 3D protein structures. In our method, the 3D structure of a protein is represented by a linear subspace, which is generated using PCA from the set of synthesized multi-view images of the protein. The similarity of two protein structures is then defined by the canonical angles between the corresponding subspaces. The merit of this approach is that we can av...
متن کامل